Arbutus BIOPHARMA Curing Chronic Hepatitis B

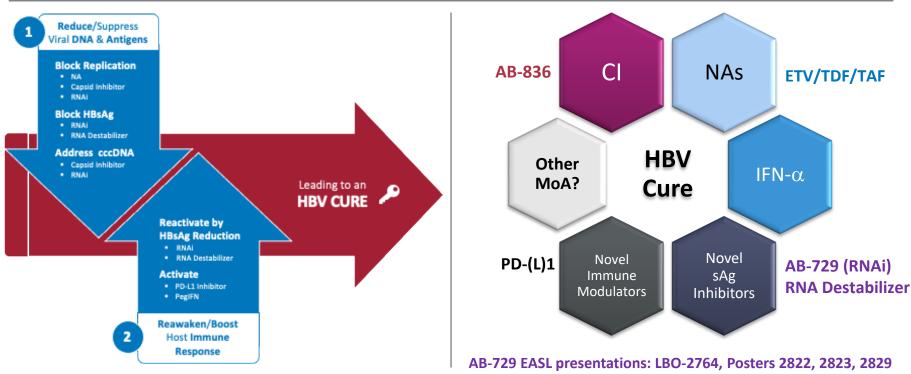
Preclinical antiviral profile of AB-836, a potent, highly selective hepatitis B virus capsid inhibitor

N Mani^{1*}, AG Cole¹, SG Kultgen¹, A Ardzinski¹, T Chiu¹, A Cuconati¹, BD Dorsey¹, K Fan¹, I Graves¹, J-T Guo², TO Harasym¹, Z Hu², R Kowalski¹, J Kunta¹, AM Lam¹, ACH Lee¹, B Liu¹, E Mesaros¹, R Rijnbrand¹, HMM Steuer¹, K Stever¹, S Tang¹, X Teng¹, EP Thi¹, and MJ Sofia¹

Session Title: Hepatitis B: novel therapeutic approaches International Liver Congress[™], June 23-26, 2021

Abstract # OS-595

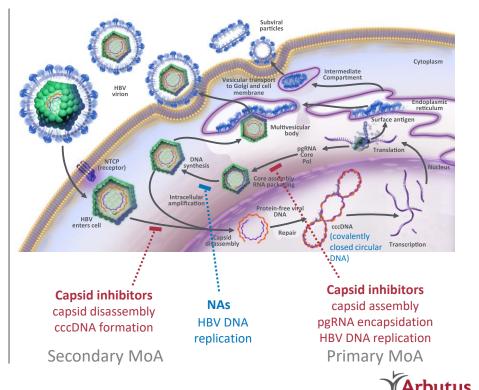
¹Arbutus Biopharma; ²Blumberg Institute


DISCLOSURE STATEMENT

The authors affiliated with Arbutus Biopharma are current and former employees and may hold company stock.

Therapeutic success in CHB: combination is key

Reduce viral DNA and antigens + activate/reactivate immune response

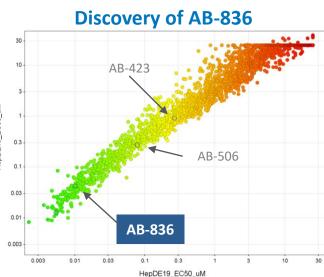

• Goal: Identify combinations that lead to improved functional cure in CHB patients

CI = capsid inhibitors; NAs = nucleos(t)ide analogs

HBV capsid assembly

An attractive target for antiviral drug development

- Interfering with HBV capsid assembly with small molecule inhibitors has been shown to translate into antiviral activity in CHB patients
- Constitutes a novel mechanism that is distinct from the NAs:
 - Cls impact pgRNA encapsidation (primary MoA) but also interfere with proper uncoating of the incoming virion and cccDNA amplification (secondary MoA)
- NAs are "leaky". Capsid inhibitors can shut down the "leakiness" of NAs in a combination regimen
- Capsid inhibitors may have the potential to play an important role in a curative regimen


AB-836: a differentiated chemotype

Designed and optimized using structure-based drug design, medicinal chemistry, and SAR

Capsid Inhibitors Evolving Clinical Landscape Attributes

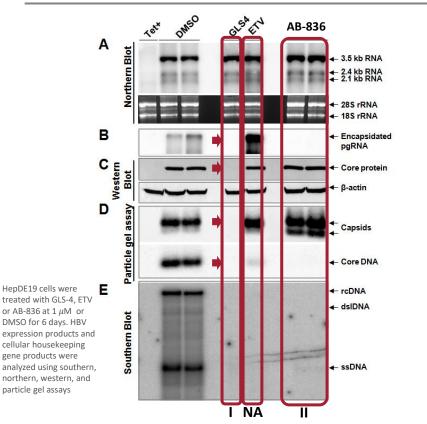
- 2015
 - Proof of Concept
 - Suboptimal Efficacy
 - BID; High Pill Burden
 - Improved Efficacy
 - QD/ Lower Pill Burden
 - Combinations
 - Suboptimal Resistance
 - Lower potency vs 2nd MoA
- 2021 Improved Potency
 - QD; Lower Pill Burden
 - Improved resistance coverage
 - Improved potency vs 2nd MoA
 - New Combinations

- Program aimed at discovering potent, chemically diverse capsid inhibitors
- Applies learnings from previous programs to build research target profile for candidate selection
- Novel chemotype designed based on a pharmacophore model derived from X-ray crystallographic data
 - Multiple chemotypes explored
 - Stringent preclinical selection criteria
- AB-836 represents a differentiating profile among internal and external capsid compounds

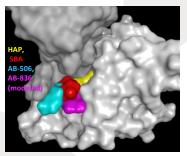
AB-836 is a potent inhibitor of HBV replication in vitro

Inhibits rcDNA synthesis and cccDNA establishment in infection systems

• AB-836 originated from a novel chemical series differentiated from other chemotypes


HepDE19	HBV infected		HBV infected		
rcDNA	Primary Human Hepatocytes		HepG2-NTCP-C4		
$EC_{50} \pm SD/CC_{50}$ (μ M)	rcDNA	sAg	rcDNA	sAg	cccDNA
	EC ₅₀ ± SD/CC ₅₀	EC ₅₀ ±SD	EC ₅₀ ± SD/CC ₅₀	EC ₅₀ ±SD	EC ₅₀ ± SD
	(μM)	(μM)	(μM)	(μM)	(μM)
0.010 ± 0.003/ >25*	0.002 ± 0.0004/ >10**	0.050 ± 0.013	0.012 ± 0.005/ >10**	0.197 ± 0.015	0.175 ± 0.040

* Cell Titer Glo assay for cell viability **GAPDH RNA inhibition


- Demonstrates potent in vitro antiviral potency against primary and secondary mechanism
- Modest 2.3x decrease in potency in presence of 40% human serum
- AB-836 showed high degree of selectivity for inhibition of HBV when compared to a panel of RNA and DNA viruses with EC₅₀ and CC₅₀ of >30 μM involving multiple cell line backgrounds

AB-836 inhibits pgRNA encapsidation in vitro

AB-836 treatment results in the formation of empty capsids in cells

- Two main classes of capsid inhibitors:
 - Aberrant capsids: e.g., HAPs such as GLS-4
 - Normal but empty capsids: e.g., JNJ-6379
- AB-836 inhibits HBV replication via formation of empty capsids
- Differentiated from NAs
- X-ray crystallography data from closely-related compounds confirms that AB-836 binds to the same site as HAPs and SBAs; at the dimer:dimer interface
- Improved potency via a unique binding mode
- Binding site highly conserved amongst genotypes of HBV

AB-836 shows pan-genotypic activity

Potent inhibition of HBV DNA in isolates representing HBV genotypes A - H

- Hepatitis B is classified into 10 genotypes (A J), of which genotypes A to D are the most prevalent, while I and J are very uncommon
- It is important that any new therapy for CHB demonstrates broad genotype coverage
- Using a HepG2 transient transfection system, the antiviral activity of AB-836 was evaluated against cloned sequences representing genotypes A to H
- As shown in the table, AB-836 demonstrated potent inhibition of all tested HBV isolates

HBV GENOTYPE	HBV DNA AVG. EC ₅₀ ± SD (μM)		
А	0.017 ± 0.004		
Α	0.007 ± 0.001		
В	0.004 ± 0.001		
С	0.004 ± 0.002		
D	0.012 ± 0.003		
E	0.066 ± 0.035		
E	0.014 ± 0.000		
F2	0.006 ± 0.001		
G	0.006 ± 0.001		
Н	0.007 ± 0.001		

n ≥ 3 independent determinations Plasmid DNA HepG2 transient transfection assay

AB-836 shows potent inhibition of core variants

All variants tested showed sub-micromolar EC₅₀ values for replication inhibition (HBV DNA)

HBV Core Variant

HBV Core Variant	AB-836 Avg. EC ₅₀ ± SD (μM)	AB-506 Avg. EC ₅₀ ± SD (μM)	
WT (GT-D)*	0.012 ± 0.003	0.063 ± 0.018	
L30F	0.056 ± 0.006	0.504 ± 0.102	
T33N	0.777 ± 0.091	23.230 ± 1.588	
T33Q	0.509 ± 0.094	14.061 ± 5.882	
L37Q	0.250 ± 0.119	1.050 ± 0.308	
Y38F	0.013 ± 0.004	0.106 ± 0.020	
I105T	0.099 ± 0.044	1.255 ± 0.559	
1105V	0.015 ± 0.006	0.087 ± 0.027	
T109M	0.024 ± 0.012	0.087 ± 0.027	

	Avg. EC ₅₀ ±SD (μM)	Avg. $EC_{50} \pm SD (\mu M)$		
WT (GT-D)*	0.019 ± 0.002	0.063 ± 0.018		
D29G	0.047 ± 0.009	-		
Т335	0.028 ± 0.007	0.162 ± 0.044		
Y38H	0.009 ± 0.002	0.032 ± 0.005		
T109I	0.007 ± 0.003	-		
T109S	0.027 ± 0.006	0.174 ± 0.061		
T114I	0.023 ± 0.002	0.148 ± 0.044		
Y118F	0.009 ± 0.001	-		
Y132F	0.004 ± 0.002	0.032 ± 0.009		
Y38F + T109S	0.020 ± 0.006	-		
n ≥ 3 independent determinations				

AB-836

*HBV genotype D background for all variants; HBV DNA measured with bDNA assay

- Core variants maintain susceptibility to SOC NAs;
- Conversely AB-836 showed comparable activity against a panel of NA-resistant variants

AB-506

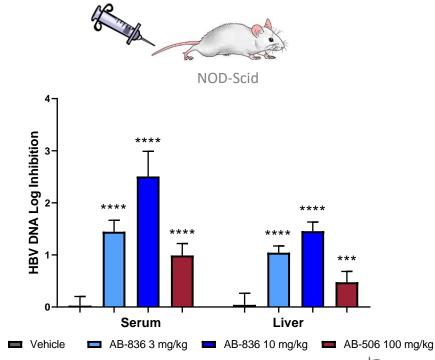
AB-836 shows a favorable preclinical PK profile

QD dosing potential in humans: high multiples over the EC_{90} in the liver (24 h post dose)

- Pharmacokinetic properties of AB-836 were assessed in rodent and non-rodent species at doses of 2 mg/kg IV and 10 mg/kg oral
- AB-836 demonstrated low systemic clearance
 - IV clearance decreased with a concomitant increase in half-life from mouse, rat, and monkey
- Oral bioavailability ranged from 30 100% with high liver:plasma ratio in rodents
- PK profile projects QD dosing potential in humans

Mouse					
Test Cmpd	PO AUC_{inf} (ng/mL*h)	IV CL (mL/min/kg)	IV T_{1/2} (h)	[24 h liver] (ng/mL)	[24 h] liver fold over EC ₉₀
AB-836	13,040	13	3.1	395	25x
Rat					
Test Cmpd	PO AUC_{inf} (ng/mL*h)	IV CL (mL/min/kg)	IV T _{1/2} (h)	[24 h liver] (ng/mL)	[24h] liver fold over EC ₉₀
AB-836	5,740	11	4.4	334	20x
Monkey					
Test Cmpd	PO AUC_{inf} (ng/mL*h)	IV CL (mL/min/kg)	IV T _{1/2} (h)	[24 h liver] (ng/mL)	[24 h] liver fol over EC ₉₀
AB-836	6,740	9	5.2	ND	ND
ND – Not determine	ed				

IV PK was done at 2 mg/kg and PO PK data was done at 10 mg/kg`



AB-836 shows robust multi-log HBV inhibition in vivo

AB-836 reduced HBV DNA in serum and liver of HBV HDI mice (QD, 7 days)

- A hydrodynamic injection (HDI) mouse model of HBV was used to evaluate AB-836
- AB-836 treatment resulted in dose responsive HBV DNA inhibition in serum as well as liver in HDI mice
- Up to 2.5 log₁₀ reduction in serum HBV DNA observed when dosed orally at 10 mg/kg once daily for 7 days

-AB-836 greater than 33× more active vs. our prior generation capsid inhibitor

Data: Mean ± SD for n=5-6; **** P<0.0001 vs Vehicle, One-Way ANOVA with Dunnett's multiple comparisons test

Conclusions: AB-836 preclinical profile

Chemically differentiated vs. AB-506, potent inhibitor, QD dosing potential in humans

- It is a rationally designed chemotype differentiated from other capsid inhibitors
- Shows potent inhibition of both the primary and secondary MoA in cell culture HBV models
- Demonstrates empty capsid formation phenotype devoid of pgRNA and rcDNA: Class II capsid inhibitor
- Engages in a unique electrostatic interaction with core protein inferred from X-ray crystallography studies in comparison to other reported capsid inhibitors
- Has an improved activity profile against a core variant panel in vitro
- AB-836 possesses favorable PK properties across rodent and non-rodent species with high liver:plasma ratios and good oral bioavailability
 - PK profile projects QD dosing potential in humans
- Demonstrates robust multi-log reduction of HBV DNA in a HDI mouse model
- AB-836 is currently undergoing Phase 1 clinical trials

