${ }^{\text {anArbutus }}$ Biopharma, Warminster, Pennsylvania, USA; ${ }^{\text {BBaruch } S \text {. Blumberg Institute, Department of Translational Medicine, Doylestown, Pennsylvania, USA }}$

ObJECTIVES

Results

$$
\text { A }{ }_{\text {Figure 2. } \mathrm{HBV} \text { PRE is required for AB-452 and THP-1 activity }}^{\text {H133 }}
$$

H133_SSSa

 Fig. 3. Biochemical assay in which the compounds were tested against purfified recombinant
PAPDS or PAPD7 enzymes. The readout was the measurement of unused ATPS in the reaction. PAPD5 or PAPDD enzymes. The readout was the measurement of unused ATPs in the reat
RG7834 and A RB- 451 serve as positive and negative control compounds, respectively.

conclusions

- AB-452 and THP-1 represent two different chemical series of HBV RNA destabilizers with broad and potent anti-HBV effects.
Both AB-452 and THP-1 promote viral RNA degradation, resulting in reduced production of HBV proteins, viral DNA replication and virion release.
Post-transcriptional element (PRE) of HBV sequence is required for the activity of both AB-452 and THP-1 compounds
THP-1 inhibits the enzymatic activity of PAPD4, PAPD5, and PAPD7.
- DHQ-1 compounds (RG7834 and AB-452) did not inhibit PAPD4, and inhibited PAPD5 more efficiently compared to
PAPD7. PAPD7.
- Consistent with the biochemical results, THP-1 inhibited HBsAg in PAPD5-KO and PAPD7-KO cells with similar efficiencies, while AB-452 was more efficient against the
PAPD7-KO cells compared to PAPD5-KO cells. PAPD7-KO cells compared to PAPD5-KO cells.
AB-452 treatment combined with capsid inhibitor(s) further promoted the degradation of HBV pgRNA, suggesting that further exploration of the combination of an HBV RN destabilizer and a capsid inhibitor is warranted.

References

1. Rammelt, C.etal. RNA. 2011 Sep; 17(9): 1737-1746
2. Liu, F.et ol. Journal of Virology. 2021 Aug; $95(18$) e00574-21
3. Shukla, S. et al. Blood Adv. 2020 Jun; 4 (12): 2717 -2722
4. Mueller, H e et al. Hepatology, 2019 Apr; 69(4):1398-1411
5. Zhou, T. et al. Antiviral Research. 2018 Jan; 199: 191-201

CONTACT INFORMATION AND DISCLOSURES muHammad sheraz ph.D., Scientist

Email: msheraz@arbutusbio.com, mgao@arbutusbio.com Tel: 267-332-6776
WEBSITE: www.arbutusbio.com
Authors affiliated with Arbutus Biopharma are employees and may own
company stock

