
RNA Interference: A New Tool in the Toolbox for Treatment of HBV

Amy Lee Senior Director, Research Arbutus Biopharma Discovery On Target 25 September 2017 Boston, MA

NASDAQ: ABUS www.arbutusbio.com

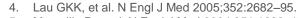
Chronic HBV – Global Unmet Medical Need

- 1 in 20 people worldwide have chronic HBV
- Virus is not cytopathic
- 25% lifetime risk for each HBsAg+ patient of HCC or cirrhosis
- Outcomes related to host immune responses

• Lozano R, Naghavi M, Foreman K et al. The Lancet 2012; 380: 2095-128

• World Health Organization: Fact Sheet No. 204. Hepatitis B, revised, August 2008. Geneva: WHO. www.who.int/mediacentre/factsheets/fs204/en/index.html

Relative Efficacy of Approved HBV Therapies


	Entecavir ^{1,2}	Tenofovir ³	PEG-IFN α-2a ^{4,5}
HBeAg positive	n = 354	n = 176	n = 271
HBV DNA undetectable	67%	76%	25%ª
HBeAg seroconversion	21%	21%	27%
ALT normalisation	68%	68%	39%
HBsAg loss	2%	3.2%	2.9% ^b
HBeAg negative	n = 325	n = 250	n = 177
HBV DNA undetectable	90%	93%	63%ª
ALT normalisation	78%	76%	38%
HBsAg loss	0.3%	0%	0.6% ^b

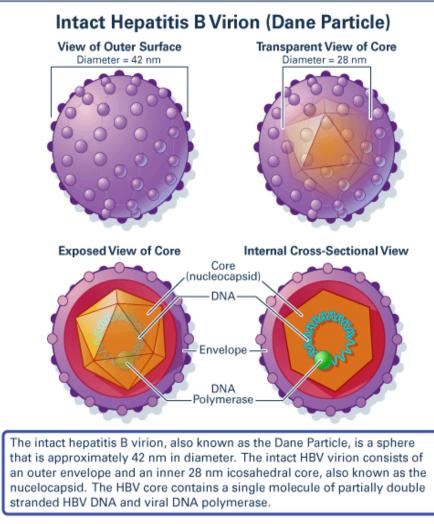
Approved therapies show a cure is possible but result in <5% cure rate

Significant
 opportunity to
 improve cure rates

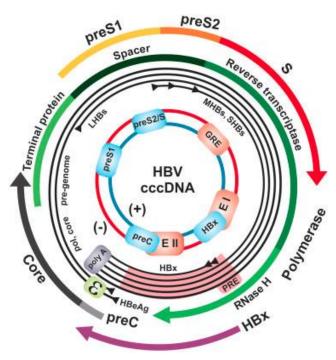
Results at 48 weeks ^a HBV DNA < 400 copies/mL; ^b At 72 weeks

- 1. Chang T-T, et al. N Engl J Med 2006;354:1001–10.
- 2. Lai C-L, et al. N Engl J Med 2006;354:1011–20.
- 3. Marcellin P, et al. N Engl J Med 2008;359:2442-55.

5. Marcellin P, et al. N Engl J Med 2004;351:1206–17.


How to Achieve a Cure?

We anticipate that HBV cure will require combinations of drugs with different actions



The Hepatitis B Virus

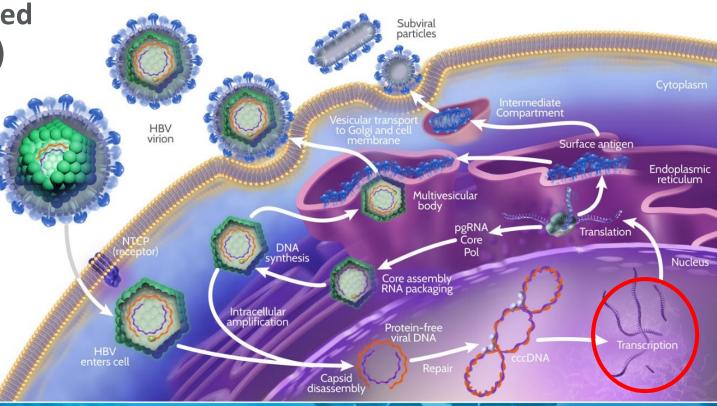
Source: Gerlich, W. 2013. Virology Journal, 10:239

Genome Structure of HBV

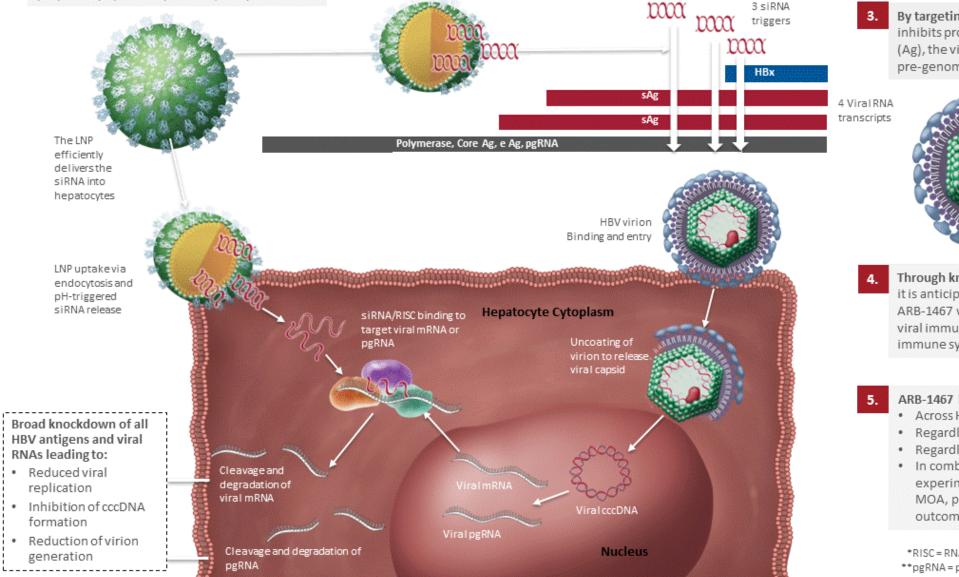
Glebe, D., etal, Sem. Liver Dis, 33, 2013, 103

- 4 Promoter elements
- 2 enhancer elements
- 10 transcription start sites

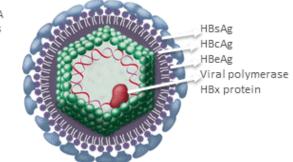
5 mRNAs:


- Pregenomic/core/pol (3.5 kb)
- Precore (3.5 kb)
- PreS1 (2.4 kb)
- PreS2/S (2.1 kb)
- X (0.7 kb)

The Hepatitis B Virus


- Host immune response is attenuated by viral antigens
- 10¹³ virons produced per day
- 1000× more subviral particles produced comprised of surface antigen (HBsAg)

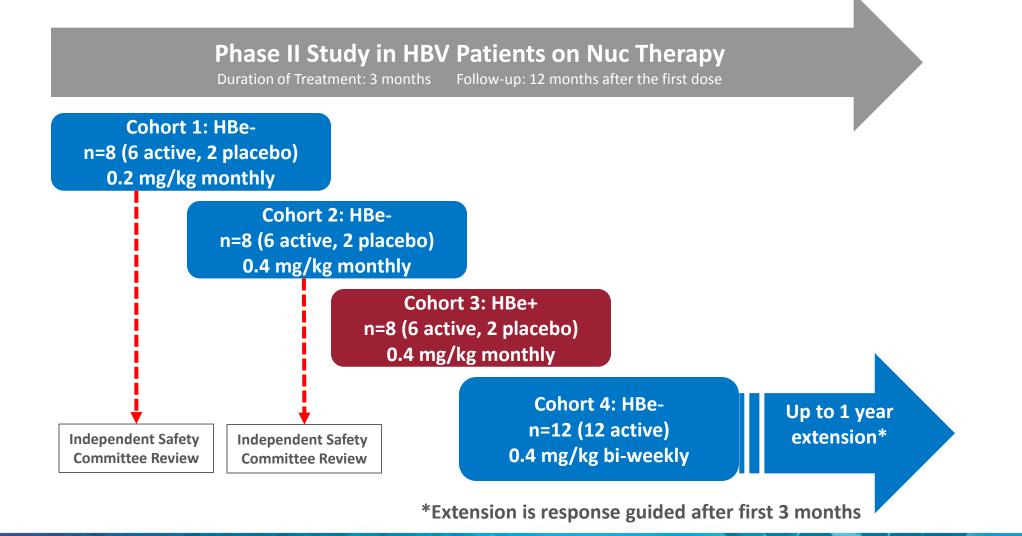
 RNA interference targets HBsAg at the level of transcription



ARB-1467 is a novel antiviral agent in which 3 anti-HBV siRNA "triggers" are packaged inside proprietary lipid nanoparticles (LNPs) 2. The 3 siRNA triggers within ARB-1467 are designed to target all 4 viral RNA transcripts encoded by the HBV genome at sites that are highly conserved across HBV genotypes

By targeting all 4 viral RNA transcripts, ARB-1467 inhibits production of all HBV viral antigens (Ag), the viral polymerase, HBx protein, and pre-genomic RNA

Through knockdown of all HBV viral proteins, it is anticipated that the 3 siRNA triggers within ARB-1467 will inhibit viral replication, remove viral immune suppression and reawaken the immune system


ARB-1467 is suitable for use:

- Across HBV genotypes
- Regardless of HBeAg status
- Regardless of treatment status
- In combination with currently approved and experimental agents due to complementary MOA, potentially leading to improved outcomes

*RISC = RNA-Induced Silencing Complex **pgRNA = pre-genomic RNA

ARB-1467 Phase II: Measuring HBsAg Reduction

ARB-1467 Drives Significant HBsAg Reduction

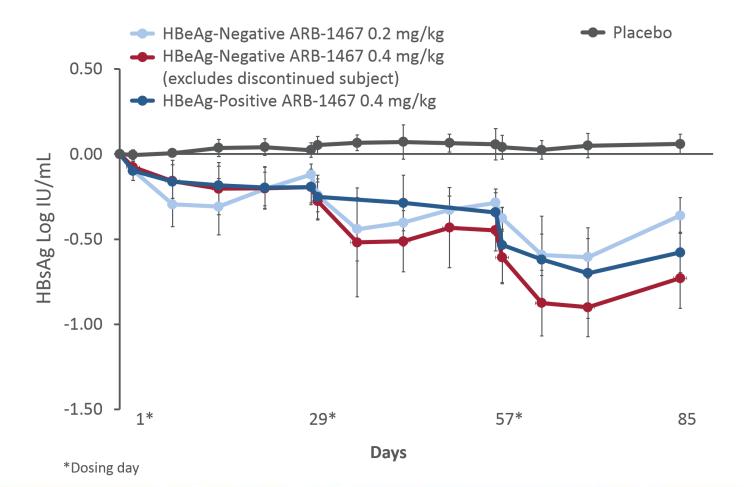
Reductions of ≥ 1.0 log10 in 5/11 patients (after 3 doses at 0.4 mg/kg)

- Potential to achieve greater reductions with continued dosing
- 17/18 patients in Cohorts 1-3 received all three monthly doses

			Multiple Dose HBsAg Reduction (log ₁₀ IU/mL)				IU/mL)
Cohort	ARB-1467 (mg/kg)	HBeAg	N	Mean ^a	Max ^c	>0.5 log ^c	>1.0 log ^c
1	0.2	Negative	6	-0.6	-1.3	5	1
2	0.4	Negative	5 ^d	-0.9	-1.3	4	3
3	0.4	Positive	6	-0.7	-1.6	4	2
Placebo	N/A		6 ^e	0.0	-0.1	0	0

^a The mean serum HBsAg reduction is the nadir value of the arithmetic mean of all values observed at each time point.

^b Maximum HBsAg reduction is the best single reduction among all patients in a cohort.


^c Number of patients reaching this threshold

^d Multiple dose results in Cohort 2 exclude one patient that discontinued at day 36 due to "HBV blip" associated with acute HEV infection ^e Placebo results are based on six subjects (two from each cohort).

ARB-1467 Multi-Dosing Shows Additive, Stepwise HBsAg Reduction

HBsAg Mean Log (IU/mL) Change from Baseline

Overall Safety

Patients, N (%)	HBeAg-Negative ARB-1467 0.2 mg/kg n=6	HBeAg-Negative ARB-1467 0.4 mg/kg n=6	HBeAg-Positive ARB-1467 0.4 mg/kg n=6	Placebo n=6
Any AE	5 (83)	5 (83)	2 (33)	5 (83)
Grade 3-4 AE	1 (17)	0	0	0
Serious AE	1 (17)*	0	0	0
Discontinuation due to AE	0	1 (17)**	0	0
Grade 3 or 4 lab abnormalities	4 (67)	5 (83)	4 (67)	4 (67)

*Left cochleovestibular deficit, not related to study treatment.

**Subject discontinued treatment after the 2nd dose of ARB-1467 due to "HBV blip"(HBV-DNA 88 IU/mL) ALT increase up to 627 U/L on Day 36 of the study associated with HEV super-infection. ALT returned to baseline by Day 60.

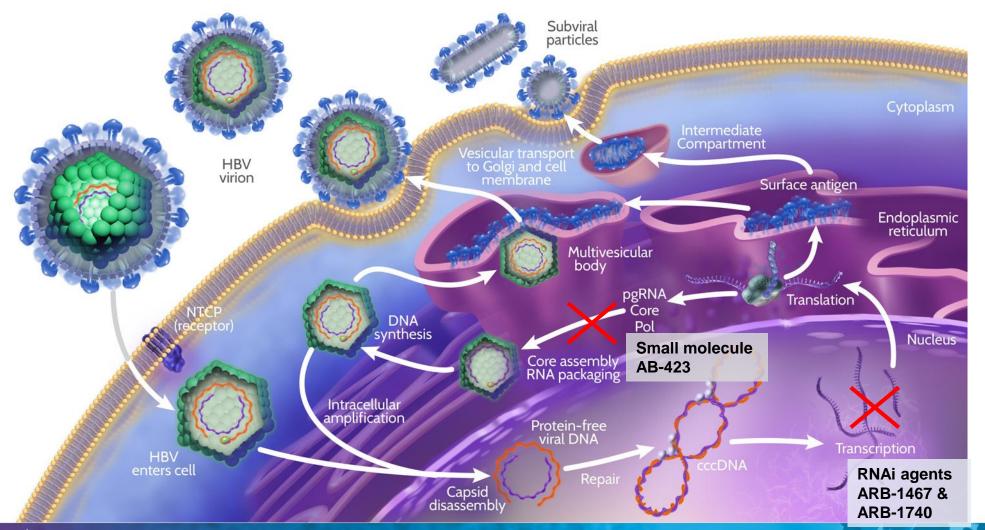
- Most AEs were mild and transient. Only two AEs were reported by two subjects; erythema (0.2 mg/kg) and upper respiratory tract infection (placebo). All other AEs were reported by single subjects
- Isolated elevated glucose, decreased lymphocytes and low phosphate values seen across all treatment groups, including placebo
- 17/18 (94%) subjects received all three monthly doses
- No infusion reaction AEs were reported

Streinu-Cercel, et al .Abstract SAT-155. The EASL International Liver Congress™; April 19-23, 2017; Amsterdam, The Netherlands.

ARB-1467 Next Steps to Advance Development

- Potential for greater HBsAg reductions with more frequent, continued dosing
 - Cohort 4: biweekly dosing, extended dosing
- 2017 Studies planned to assess longer duration and combination with immune stimulator to maximize HBsAg reduction
- Future combinations will include multiple Arbutus agents

ARB-1467 Cohort 4 data in 2H17 Longer term ARB-1467 studies with nucs and IFN to begin in 4Q17



LNP siRNA + pegIFN Combo

Arbutus

BIOPHARMA

Preclinical study in infected humanized mouse model

ARB-1467 & ARB-1740 (RNA interference)

 Three siRNAs packaged in a lipid nanoparticle delivery system

AB-423 (Core/Capsid Inhibitor)

- Orally administered small molecule
- Misdirects capsid assembly and inhibits pgRNA encapsidation

Pegylated Interferon

Approved drug

LNP siRNA + pegIFN

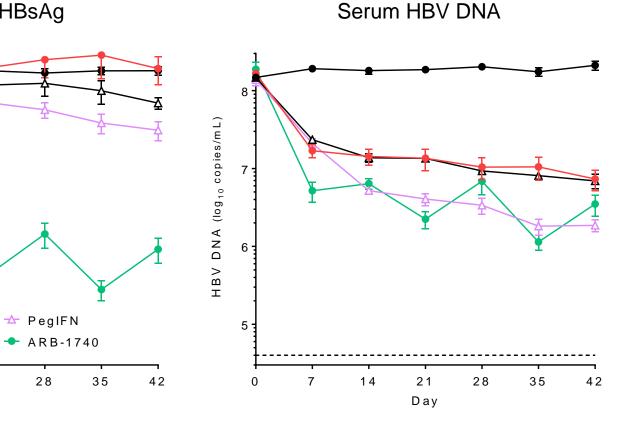
 Vehicle 🔶 AB-423

14

21

Day

28


🛧 ETV

7

Preclinical study in infected humanized mouse model

Each agent has stand-alone activity against HBV virus

Serum HBsAg

	Treatment for 6 weeks			
	Dosage	Route	Frequency	
AB-423	100 mg/kg	РО	BID	
ETV	1.2 µg/kg	РО	QD	
PegIFN	30 µg/kg	SQ	2×/wk	
ARB-1740	3 mg/kg	IV	biweekly	

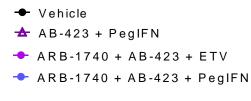
3 ·

2 -

1 -

0

HBsAg (log₁₀ IU/mL)


LNP siRNA + pegIFN

Preclinical study in infected humanized mouse model

Triple combo containing pegIFN has additional benefit of more antigen control

Serum HBsAg Serum HBV DNA HBV DNA (log₁₀ copies/mL) 3 . HBsAg (log₁₀ IU/mL) 7 -2 -6 . 5 -1 -14 21 28 35 42 14 21 28 35 42 0 7 7 0 Day Day

	Treatment for 6 weeks			
	Dosage	Route	Frequency	
AB-423	100 mg/kg	РО	BID	
ETV	1.2 μg/kg	РО	QD	
PegIFN	30 µg/kg	SQ	2×/wk	
ARB-1740	3 mg/kg	IV	biweekly	

HBsAg Removal Correlated with **↑** Host Immune Response

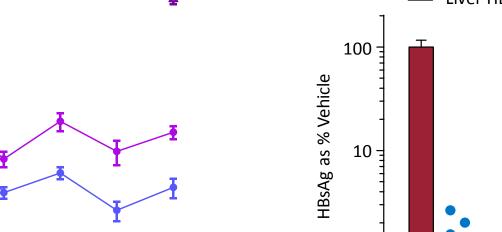
Serum HBsAg

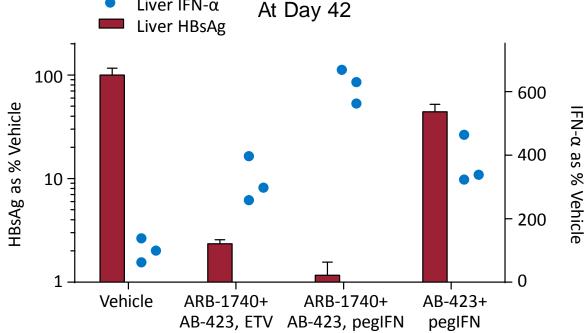
21

Day

14

28


35


42

Infected humanized mouse model

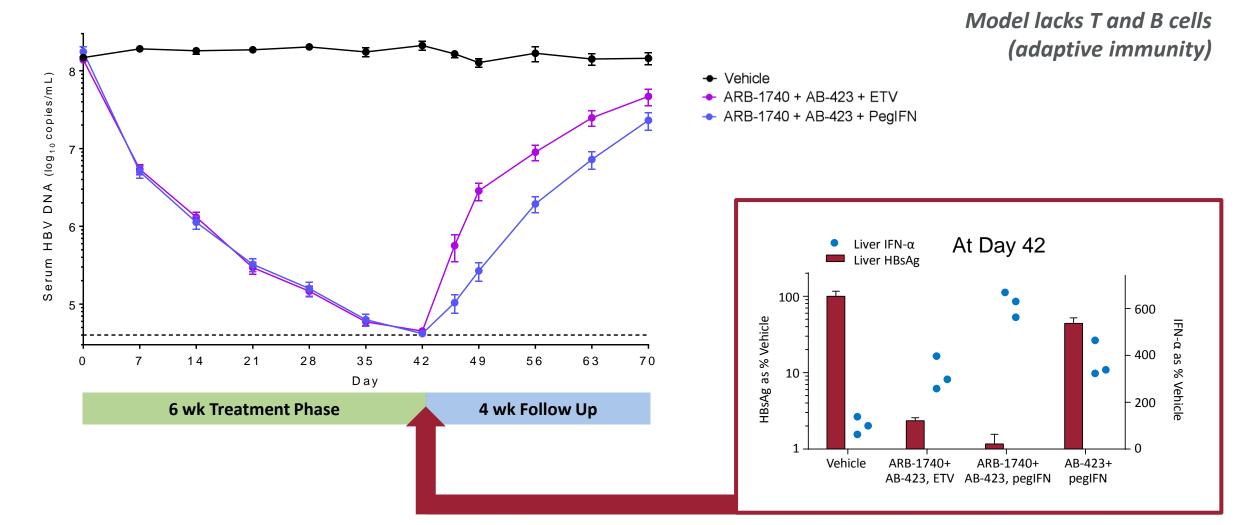
- HBsAg removal by ARB-1740 correlated with gain in human IFN-α expression
- In vivo human hepatocyte innate immune response was further potentiated by combining ARB-1740 with pegylated interferon

Liver IFN-α

3 .

2 :

1 -

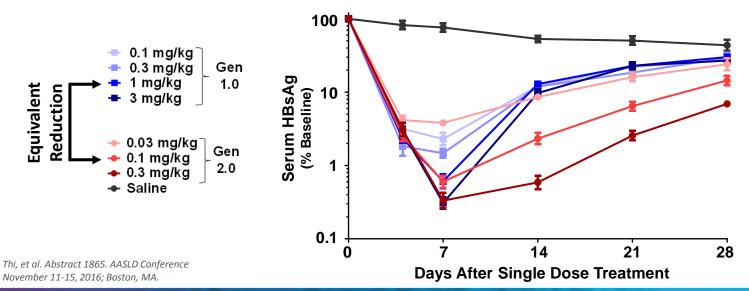

0

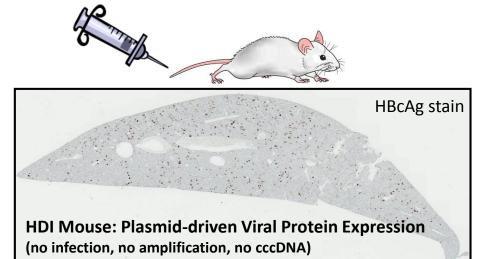
7

HBsAg (log₁₀ IU/mL)

Slower Off-treatment Viral Rebound Correlated with 个 Host Immune Response

Infected humanized mouse model

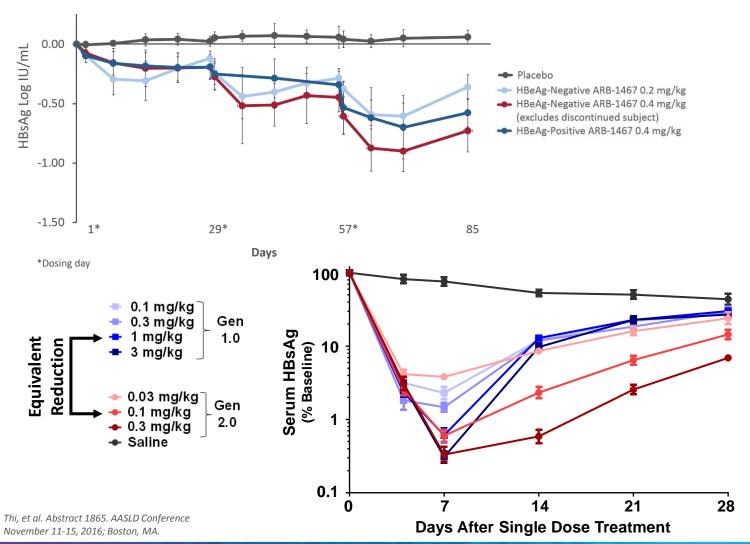


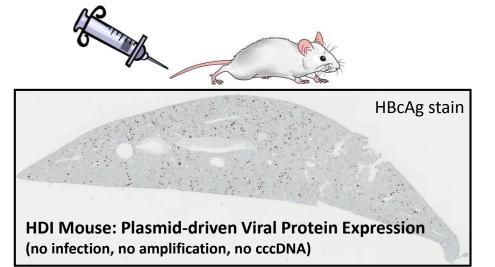


ARB-1467 and ARB-1740

Clinical experience versus preclinical modeling

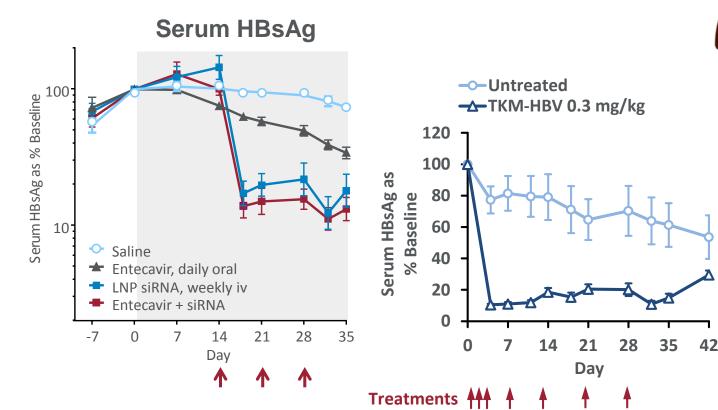
- ARB-1467 and ARB-1740 both have:
 - Unique 3-trigger design targets all HBV transcripts and, in addition to inhibiting viral replication, prevents production of all antigens
 - Employ proprietary LNP delivery technology
- ARB-1740 Phase II, Cohorts 1 and 2 showed activity, but no significant potency advantage over ARB-1467


Immunocompromised mouse given <u>hydrodynamic (rapid large volume)</u> <u>i</u>njection of plasmid encoding HBV genes

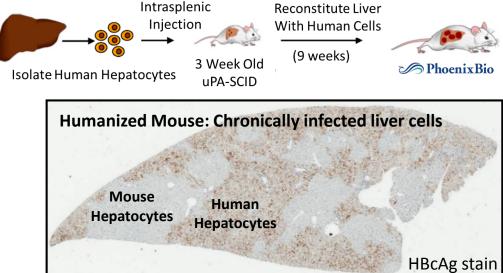

- Simplified model no cccDNA, no adaptive immune system
- Showed multi-log HBsAg reductions from single dose at dosages used in clinic

ARB-1467 and ARB-1740

Clinical experience versus preclinical modeling



Immunocompromised mouse given <u>hydrodynamic (rapid large volume)</u> <u>i</u>njection of plasmid encoding HBV genes


- Simplified model no cccDNA, no adaptive immune system
- Showed multi-log HBsAg reductions from single dose at dosages used in clinic

Clinical Experience vs Preclinical Modeling

LNP siRNA dose: 1 mg/kg (day 14), 0.5 mg/kg (day 21, 28) ETV dose: 30 mg/kg/day, PO, Days 0-35

Immunocompromised mouse carrying humanized liver infected with HBV genotype C

- More complex model cccDNA present in infected human cells, no adaptive immunity
- Requires higher doses than HDI mouse
- No evidence of additivity from repeat doses at greater frequency than tested in clinic

MacLachlan, I. 10th Annual Meeting of the Oligonucleotide Therapeutics Society. October 15, 2014; San Diego, CA.

Preclinical Models Mimicking Chronic Human HBV

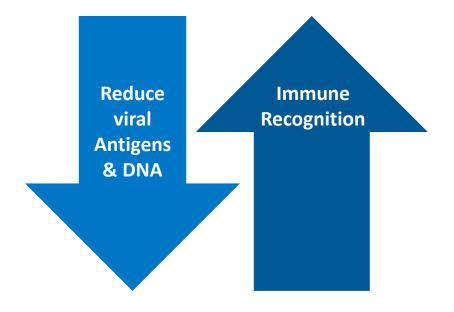
Each have their advantages and drawbacks

- No model yet 'predictive' of HBV cure
- Preclinical investigations can provide supportive data to help inform the design of investigative human trials

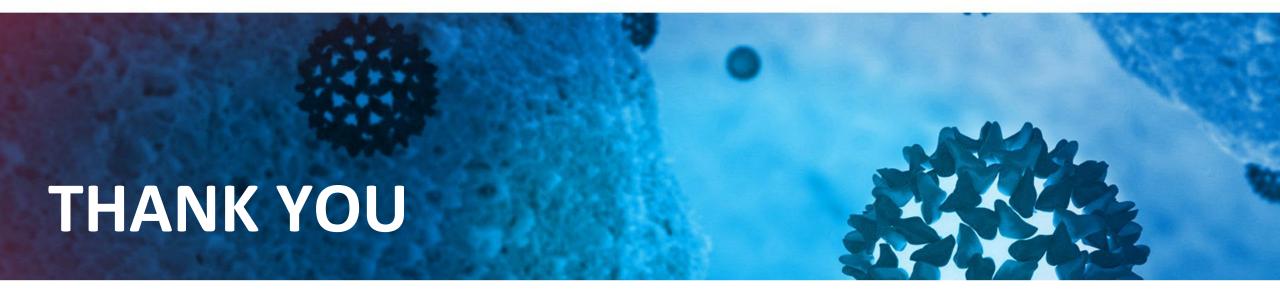
	Mouse Models			
Features of Model	Hydrodynamic Injection	Chimeric Humanized Liver	AAV Tolerance (Immune competent)	
Viral Infection	×	\checkmark	×	
Viral Replication	×	\checkmark	×	
HBV DNA	\checkmark	\checkmark	\checkmark	
HBsAg	\checkmark	\checkmark	\checkmark	
HBeAg	\checkmark	\checkmark	\checkmark	
HBcAg	\checkmark	\checkmark	\checkmark	
cccDNA	×	\checkmark	×	
Adaptive Immunity	×	×	\checkmark	

Woodchuck

Chimp



Tree shrew


Summary

- ARB-1467 is a clinically validated RNA interference agent for the treatment of cHBV
- ARB-1467 drives significant HBsAg reduction in both eAg-neg and eAg-pos patients
- Longer term ARB-1467 studies with nucs and IFN to begin in 4Q17
- Humanized mouse data support the hypothesis that HBV antigen removal will promote immune recognition and viral control
- Combination of ARB-1467 with approved drugs and/or novel MOA agents can enhance control of HBV and drive progress closer towards cure

Acknowledgements:

Colleagues and team members at Arbutus, who have together made this progress possible

NASDAQ: ABUS www.arbutusbio.com