Preclinical antiviral drug combination studies utilizing novel orally bioavailable agents for chronic hepatitis B infection: AB-506, a next generation HBV capsid inhibitor, and AB-452, an HBV RNA destabilizer

Rene Rijnbrand
Arbutus Biopharma Inc.
Antivirals: Targeting HBV and Beyond
September 25, 2018, Boston, MA
>257M people are chronically infected with HBV, globally.

~900k people die every year as a consequence despite the availability of effective vaccines and antivirals.

The Hepatitis B Virus

Genome Structure of HBV

- 4 Promoter elements
- 2 enhancer elements
- 10 transcription start sites

5 mRNAs:
- Pregenomic/core/pol (3.5 kb)
- Precore (3.5 kb)
- PreS1 (2.4 kb)
- PreS2/S (2.1 kb)
- X (0.7 kb)

Source: Gerlich, W. 2013. Virology Journal, 10:239
Keys to Therapeutic Success

Therapeutic success will combine drugs with complementary MOAs.
Key to Therapeutic Success: Combining Agents with Different MOA

HBV RNA destabilizers: AB-452, siRNA: ARB-1467, AB-729

Capsid inhibitors: AB-423, AB-506
HBV Capsid Assembly
An attractive target for drug development

HBV capsid assembly pathway and examples of capsid inhibitors

- Hepatitis B virus replication is strictly dependent upon capsid assembly around pgRNA
- Proper assembly of HBV nucleocapsid is essential for viral genome (rcDNA) synthesis, infectious virion production and maintenance of a nuclear cccDNA pool
- Interfering with HBV capsid assembly with small molecule inhibitors has been shown to translate into antiviral activity in vitro and in vivo
- The capsid assembly process thus represents a bona fide antiviral target
- Constitutes a novel mechanism that is distinct from the nucleos(t)ide analogs currently available for clinical use

HAP: heteroaryldihydropyrimidines; SBA: sulfamoylbenzamides; PP: phenylpropenamides

cccDNA = covalently closed circular DNA; rcDNA = relaxed circular DNA; pgRNA = pregenomic RNA
AB-506 is a Next Generation HBV Capsid Inhibitor

- AB-506 is our 2nd generation HBV capsid inhibitor from a novel chemical series
- Demonstrates potent inhibition of viral replication in different HBV cell culture models

![Table showing EC50, EC90, CC50 values for AB-506 and other compounds](image)

- In an HBV infected primary human hepatocyte assay, AB-506 inhibits HBV replication with an EC50 of 32 nM
- Maintains activity in the presence human serum with a modest ~6 fold increase in EC50 in 40% human serum
- No cross-resistance with NucR variants, consistent with its distinct mechanism of action
- Active against HBV genotypes A-H
- Demonstrates high degree of antiviral selectivity for HBV; no inhibition of HCV, WNV, RSV, IFA, HSV, HCMV, DENV, HRV
AB-506: A Next Gen HBV Capsid Inhibitor

Potent inhibitor of HBV replication in vitro

- AB-506 forms capsids devoid of pgRNA
- Inhibits formation of rcDNA

Capsid inhibitors bind at the dimer:dimer interface of the core protein and induce the formation of empty capsid particles

Dose Dependent Reduction in serum HBV DNA in an HDI mouse model of HBV

[Graph showing dose-dependent reduction in serum HBV DNA]
AB-452: A Potent HBV RNA Destabilizer
Novel small molecule HBV RNA Destabilizer

AB-452 In vitro Potency

In HepG2.2.15 cells

<table>
<thead>
<tr>
<th>Compound Conc. (uM)</th>
<th>% HBV production Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x10^-5</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Virus production
0.2 nM

<table>
<thead>
<tr>
<th>PHH</th>
<th>sAg</th>
<th>EC_{50}, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eAg</td>
<td>8.7</td>
</tr>
<tr>
<td>HepG2/NTCP</td>
<td>sAg</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>eAg</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Genotype*

<table>
<thead>
<tr>
<th>Genotype</th>
<th>EC_{50}, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.3</td>
</tr>
<tr>
<td>B</td>
<td>1.8</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Human serum effect
2x

- AB-452 is a potent, highly selective small molecule inhibitor of HBV replication through destabilization of HBV RNA
- *In vitro* AB-452 showed: drops in viral RNA, s/e/c Ag, and virion production
 - Pan-genotypic activity
 - No cross-resistance with Nuc^R variants
 - Highly degree of antiviral selectivity for HBV

Human serum effect
Multiple Stages of HBV Life Cycle Affected by AB-452

- HBV RNAs destabilized by AB-452:
 - viral gene expressions
 - DNA replication
 - virion assembly
AB-452: A Potent HBV RNA Destabilizer

Novel small molecule HBV RNA Destabilizer

- BID PO dosing resulted in up to 1.4 log10 serum HBsAg reduction. Correlated with liver HBV RNA levels.

- AB-452 significantly inhibited HBV replication and reduced viral RNA and antigens in an immunocompetent AAV mouse model.
Evaluation of the Effect of Multiple Compounds on HBV: In Vitro Synergy Studies

96-well plate containing cells infected by HBV or expressing HBV reporter

Test activity of the 2 compounds together

Add concentration range for 1st compound
Add concentration range for 2nd compound

Outcomes:
- Compounds work against each other: Antagonism
- Compounds don’t interfere with each other: Additive
- Compounds enhance each other: Synergy
Combination of AB-506 and AB-452 With NAs and siRNA
Molecules are mechanistically compatible
In Vitro Combination Studies: Summary

Molecules are mechanistically compatible

<table>
<thead>
<tr>
<th>HBV Inhibitor</th>
<th>ETV</th>
<th>TDF</th>
<th>TAF</th>
<th>ARB-1467</th>
<th>AB-506</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Gen Capsid Inhibitor*</td>
<td>Additive</td>
<td>Additive</td>
<td>Moderate Synergy</td>
<td>Additive</td>
<td>NA</td>
</tr>
<tr>
<td>AB-452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV RNA Destabilizer**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sAg</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Minor Synergy</td>
<td>ND</td>
</tr>
<tr>
<td>HBV DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate Synergy</td>
<td></td>
<td></td>
<td>Additive</td>
<td>ND</td>
<td>Additive</td>
</tr>
</tbody>
</table>

- *HepDE19 HBV cell culture model with rcDNA quantitation
- **HepG2.2.15 HBV cell culture model with HBV DNA and HBsAg quantitation
Evaluation of the Effect of Multiple Compounds on HBV: In Vivo Evaluation

1. Administer HBV or reporter infected mouse
2. Outcomes:
 - Compounds work against each other: antagonism
 - Compounds don’t interfere with each other: additive or synergy

- Fewer test conditions can be examined in animals than in cell culture
- Prior dose selection is critical; mono-therapy arms are run at sub-optimal dose levels so that potential additive effect of combination therapy can be detected
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF

HDt Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 log_{10} reductions in serum HBV DNA vs the vehicle control, respectively.
- Triple combination effected larger serum HBV DNA reduction of 2.8 log_{10} vs the vehicle control.
- As expected, serum HBsAg reductions observed only in AB-452 groups.
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 \log_{10} reductions in serum HBV DNA vs the vehicle control, respectively.
- Triple combination effected larger serum HBV DNA reduction of 2.8 \log_{10} vs the vehicle control.
- As expected, serum HBsAg reductions observed only in AB-452 groups.

Once-Daily Oral Dose × 7 Days
Mean (n=7-8) ± SEM
Open symbol indicates close to LLOQ
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF
HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 \(\log_{10} \) reductions in serum HBV DNA vs the vehicle control, respectively.
- Triple combination effected larger serum HBV DNA reduction of 2.8 \(\log_{10} \) vs the vehicle control.
- As expected, serum HBsAg reductions observed only in AB-452 groups.

Once-Daily Oral Dose × 7 Days
Mean (n=7-8) ± SEM
Open symbol indicates close to LLOQ.
In Vivo Dual and Triple Combination of AB-506, AB-452 and TDF

HDI Mouse Model of HBV: Serum HBV DNA and HBsAg Reductions

- Dual combinations of AB-506 + AB-452, AB-506 + TDF, and AB-452 + TDF showed strong antiviral activity with mean 1.4, 1.9 and 2.2 \(\log_{10} \) reductions in serum HBV DNA vs the vehicle control, respectively.

- Triple combination effected larger serum HBV DNA reduction of 2.8 \(\log_{10} \) vs the vehicle control.

- As expected, serum HBsAg reductions observed only in AB-452 groups.

Once-Daily Oral Dose × 7 Days
Mean (n=7-8) ± SEM
Open symbol indicates close to LLOQ.
In vivo Dual and Triple Combination of AB-506, AB-452 and TDF HDI Mouse Model of HBV: Liver HBV DNA and HBsAg Reductions

- Liver HBV DNA reductions reflect serum HBV DNA reductions
- AB-506 showed greater effect on liver HBV DNA reduction than TDF
- Only AB-452 containing groups showed liver HBsAg reductions
Summary

• Key to therapeutic success will involve combination of different MoA agents
 • Reduce/Suppress Viral DNA and Antigens
 • Reawaken/Boost host immune responses

• Agents with novel MoA undergoing clinical evaluation; more in preclinical stages
 • eg: Capsid Inhibitors, HBV RNA Destabilizers, RNAi Agents, NA, others

• *In vitro* and *in vivo* antiviral evaluations of Capsid Inhibitor AB-506, RNA Destabilizer AB-452, siRNA, and NA agents show favorable additive to synergistic effects in combination
Acknowledgments

Arbutus Team

Nagraj Mani
Alice H.L. Li
Andrzej Ardzinski
Laurèn Bailey
Janet R. Phelps
Robbin Burns
Tim Chiu
Andrew G. Cole
Andrea Cuconati
Bruce D. Dorsey
Ellen Evangelista

Dimitar Gotchev
Troy O. Harasym
Agnes Jarosz
Salam Kadhim
Andrew Kondratowicz
Steven G. Kultgen
Kaylyn Kwak
Amy C.H. Lee
Sara Majeski
Kevin McClintock
Joanna Pan

Chris Pasetka
Jorge Quintero
Rene Rijnbrand
Alexander Shapiro
Holly M. Micolochick Steuer
Kim Stever
Sunny Tang
Xiaowei Teng
Michael J. Sofia