# Identification and Characterization of AB-452, a Potent Small Molecule HBV RNA Destabilizer *In Vitro* and *In Vivo*

AASLD **BLIVER MEETING**® 2017 WASHINGTON, DC OCTOBER 20-24

#923



Dimitar Gotchev<sup>1</sup>, Min Gao<sup>1</sup>, Chris Moore<sup>1</sup>, Andrew Kondratowicz<sup>2</sup>, Cory Abbott<sup>2</sup>, Lauren Bailey<sup>1</sup>, Yingzhi Bi<sup>1</sup>, Robbin Burns<sup>2</sup>, Shuai Chen<sup>1</sup>, Tim Chiu<sup>2</sup>, Bruce D. Dorsey<sup>1</sup>, Ellen Evangelista<sup>2</sup>, Laurel Fu<sup>2</sup>, David Fraser<sup>2</sup>, Fang Guo<sup>1</sup>, Troy O. Harasym<sup>2</sup>, Richard Holland<sup>2</sup>, Agnes Jarosz<sup>2</sup>, Salam Kadhim<sup>2</sup>, Ramesh Kakarla<sup>1</sup>, Kaylyn Kwak<sup>2</sup>, Amy C. H. Lee<sup>2</sup>, Alice H. L. Li<sup>2</sup>, Fei Liu<sup>1</sup>, Sara Majeski<sup>2</sup>, Kevin McClintock<sup>2</sup>, Angela Miller<sup>2</sup>, Dan Nguyen<sup>1</sup>, Chris Pasetka<sup>2</sup>, Luying Pei<sup>2</sup>, Stephen P. Reid<sup>2</sup>, Rene Rijnbrand<sup>1</sup>, Alexander Shapiro<sup>2</sup>, Sunny Tang<sup>2</sup>, Xiaowei Teng<sup>2</sup>, Lucy Wang<sup>1</sup>, Mark Wood<sup>2</sup>, Xin Ye<sup>2</sup>, and Michael J. Sofia<sup>1</sup>
Arbutus Biopharma Inc., <sup>1</sup>Warminster, PA, USA and <sup>2</sup>Burnaby, BC, Canada

### **BACKGROUND**

- Expression of viral proteins, especially HBsAg, has been strongly associated with HBV persistence. High levels of serum HBsAg may impair B/T cell function in vivo by masking neutralizing antibodies and contributing to T cell exhaustion
- HBsAg seroconversion, an indicator of HBV cure, is always accompanied by HBsAg seroclearance
- Current approved treatment for HBV using nucleos(t)ides or interferon, can effectively suppress viral replication, but cures are rare
- Development of therapeutic agents targeting the expression of the HBV proteins, in particular HBsAg, can potentially provide much needed addition to treatment options for HBV cure

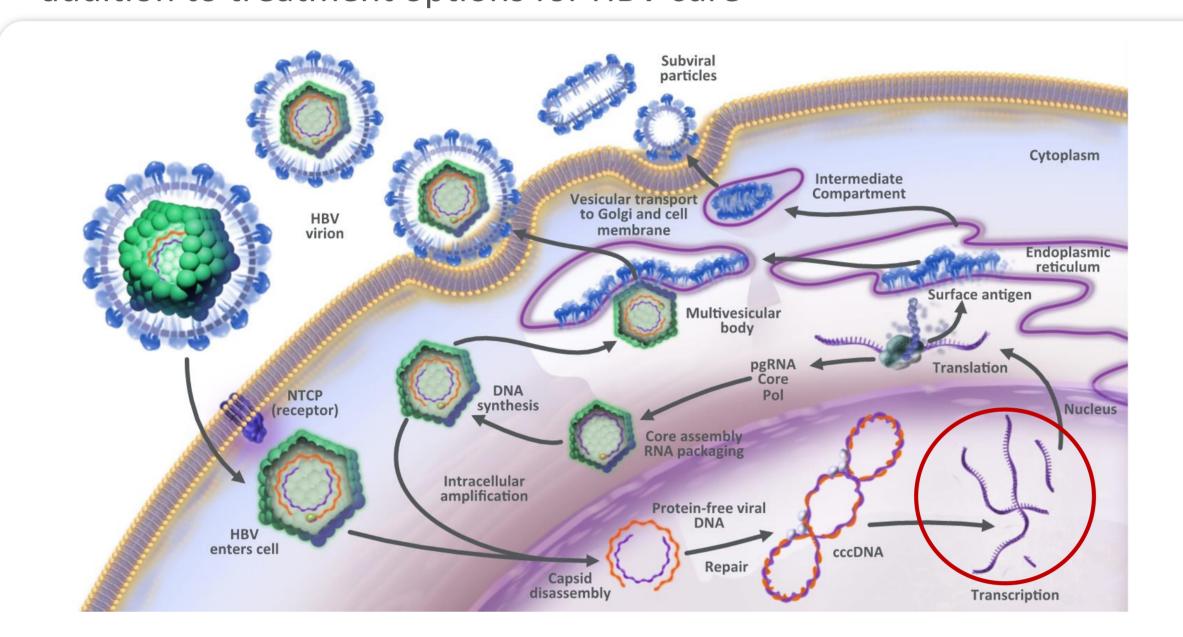



Figure 1: HBV life cycle and role of RNA destabilizers

### **OBJECTIVES**

Characterize the *in vitro* and *in vivo* antiviral activities of AB-452, a potent small molecule that destabilizes HBV RNA.

### MATERIALS AND METHODS

- Inhibition of HBsAg was determined in HepG2.2.15, Huh-7, primary human hepatocytes and HepG2/NTCP cells using a HBsAg immunoassay (microplate-based CLIA kits, Autobio Diagnosics Co., Zhengzhou, China)
- Antiviral activity was determined in different cell culture models of HBV using ELISA, quantitative PCR and Northern/Sothern analysis to measure effects on HBsAg, HBeAg, RNA or DNA
- Genotype activity was determined using a transient transfection assay system
- Cytotoxicity was evaluated in various cell lines using CellTiter-Glo, HCV replicon and cell protection assays
- Antiviral activity against viruses of various families was determined using different cell culture assay systems
- In vitro combination studies were conducted in HBV cell culture models at different compound combinations in a checkerboard format and analyzed using the MacSynergy II program<sup>1</sup>
- The in vivo antiviral activity as monotherapy was assessed in an AAV HBV mouse model<sup>2</sup>

### RESULTS

Table 1: AB-452 is a potent inhibitor of HBV replication in vitro

| Potency Model | EC <sub>50</sub> (μM) | CC <sub>50</sub> (μM) | Endpoint     |
|---------------|-----------------------|-----------------------|--------------|
| HepG2.2.15*   | 0.0015                | >50                   | HBsAg/ELISA  |
| HepG2.2.15    | 0.0028                | >50                   | HBeAg/ELISA  |
| HepG2.2.15    | 0.0002                | >50                   | HBV DNA/qPCR |
| РНН           | 0.0087                | >1                    | HBsAg/ELISA  |
| РНН           | 0.0088                | >1                    | HBeAg/ELISA  |
| HepG2/NTCP    | 0.0097                | ND                    | HBsAg/ELISA  |
| HepG2/NTCP    | 0.0036                | ND                    | HBeAg/ELISA  |

<sup>\*</sup> Human serum shift was 2x

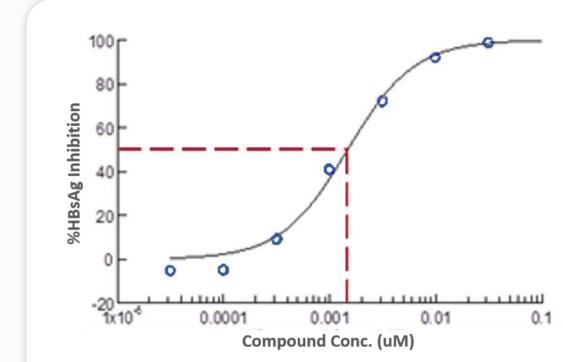



Figure 2: AB-452 is a potent
HBsAg inhibitor in HepG2.2.15
cells with an EC<sub>50</sub> value of 1.5 nM

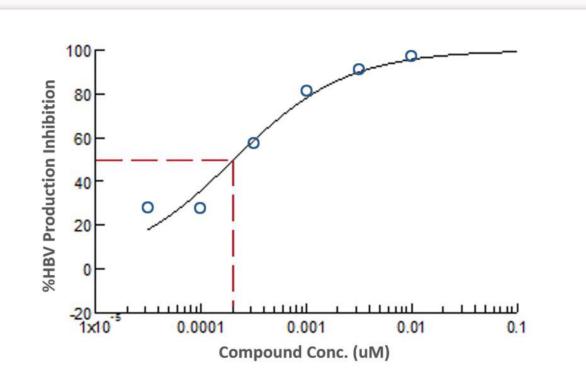



Figure 3: AB-452 is a potent inhibitor of HBV DNA in HepG2.2.15 cells with an  $EC_{50}$  value of 0.2 nM

Table 2: AB-452 has broad genotype activity

| Genotype* | EC <sub>50</sub> (μM)** |
|-----------|-------------------------|
| A         | 0.0013                  |
| В         | 0.0018                  |
| C         | 0.0020                  |
| D         | 0.0008                  |

- \* Plasmids were verified by DNA sequencing (Huh-7 cells used in transfection)
- \*\* Readout HBsAg

### Table 3: AB-452 is a selective inhibitor of HBV

| Virus  | Family           | Genome                  | AB-452                |                       | Host Cell |
|--------|------------------|-------------------------|-----------------------|-----------------------|-----------|
|        |                  | Genome                  | EC <sub>50</sub> (μΜ) | CC <sub>50</sub> (μM) | Line      |
| HCV    | Flaviviridae     | (+) ssRNA               | >30                   | >30                   | Huh7      |
| WNV    | Flaviviridae     | (+) ssRNA               | >30                   | >30                   | VERO      |
| RSV    | Paramyxoviridae  | non-segmented (-) ssRNA | >30                   | >30                   | HEp2      |
| IFA    | Orthomyxoviridae | segmented (-) ssRNA     | >30                   | >30                   | MDCK      |
| HIV    | Retroviridae     | ssRNA to DNA            | >30                   | >30                   | CEMSS     |
| HSV    | Herpesviridae    | dsDNA                   | >30                   | >30                   | VERO      |
| hCMV   | Herpesviridae    | dsDNA                   | >30                   | >30                   | MRC5      |
| DENV   | Flaviviridae     | (+) ssRNA               | >30                   | >30                   | Huh7      |
| HRV 1A | Picornaviridae   | (+) ssRNA               | >30                   | >30                   | H1/HeLa   |

HCV = Hepatitis C Virus; WNV = West Nile Virus; RSV = Respiratory Syncytial Virus; IFA = Influenza A Virus; HIV = Human Immunodeficiency Virus; HSV = Herpes Simplex Virus; hCMV = Human Cytomegalovirus; DENV = Dengue Virus; HRV = Human Rhinovirus

**Table 4:** AB-452 shows additive to synergistic effects when combined with HBV LNP siRNA agents *in vitro* 

| Inhibitor A | Inhibitor B | Cell Culture Model | Conclusion* |
|-------------|-------------|--------------------|-------------|
| AB-452      | ARB-1467**  | HEPG2.2.15 (HBsAg) | Additive    |
| AB-452      | ARB-1740**  | HEPG2.2.15 (HBsAg) | Additive    |

<sup>\*</sup>MacSynergy II Analysis; Bliss Independence Model<sup>1</sup>

# CONCLUSIONS

- AB-452 is a potent, highly selective inhibitor of HBV replication through destabilization of HBV RNA
- In vitro AB-452 showed:
- additive to synergistic antiviral activity in combination with LNP siRNA agents
- no significant activity against unrelated viruses
- no apparent in vitro cytotoxicity
- AB-452 significantly inhibited both HBV replication and antigenemia in an immunocompetent AAV mouse model
- AB-452 is being evaluated for advancement into clinical development

## REFERENCES

- 1. Prichard, M. N. and Shipman, C., Jr. A three-dimensional model to analyze drug-drug interactions. *Antiviral Res.* **1990**, *14*, 181.
- 2. Dion, S.; Bourgine, M.; Godon, O.; Levillayer, F.; Michel, M.-L. Adeno associated virus-mediated gene transfer leads to persistent hepatitis B virus replication in mice expressing HLA-A2 and HLA-DR1 molecules. *J. Virol.* **2013**, *87*, 5554.

# Serum HBs Williams 10 1 2 3 4 5 6 7 Study Day

Figure 4: Time course of HBV RNA reduction by AB-452. HBV RNA reduction

occurs at 4 to 8 hours after addition of 70 nM inhibitor in HepG2.2.15 cells.

DMSO ETV GLS-4 Capsid AB-452

Figure 5: Multiple aspects of the HBV lifecycle affected by AB-452. HBV

RNA reduction leads to interference in viral gene expression, DNA

replication, and virion assembly in HepG2.2.15 cells.

Core

Capsid DNA

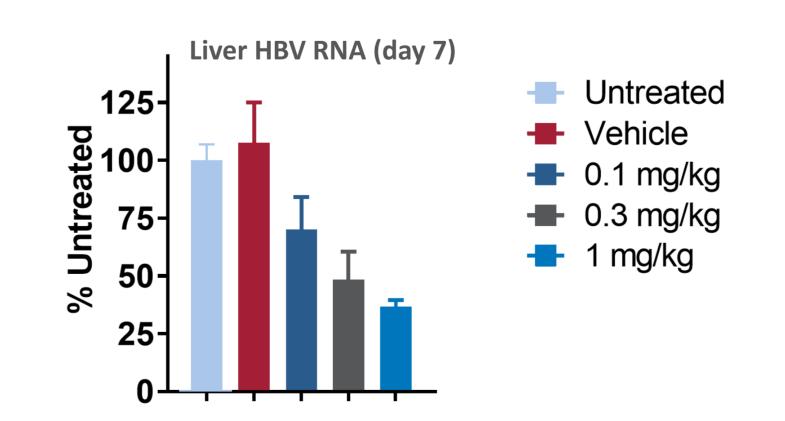



Figure 6: Administration of AB-452 for 1 week, PO, BID at 0.1, 0.3 and 1 mg/kg resulted in up to 1.4 log10 serum HBsAg reduction in a dose-dependent manner. This correlated well with liver HBV RNA levels. An immunocompetent mouse model of chronic HBV, infected with an AAV carrying a 1.2-fold overlength genome of genotype D was utilized and results are expressed as a percentage of individual animals' Day 0 predose values. Data shown as mean ± SEM (n=5).

## CONTACT INFORMATION AND DISCLOSURES

DIMITAR GOTCHEV, Ph.D., Sr. Principal Scientist

- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA 18974
- Email: dgotchev@arbutusbio.com
- Tel: 1-267-332-6816
- Authors affiliated with Arbutus Biopharma are employees and may own company stock

### **WEBSITE:**

www.arbutusbio.com



<sup>\*\*</sup>ARB-1467 and ARB-1740 are HBV LNP siRNA agents